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Anisotropy of the mechanical  -relaxation 
in biaxially oriented linear polyethylene 

C. P. B U C K L E Y , *  N. G. McCRUM 
Department of Engineering Science, University of Oxford, Oxford, UK 

Alternative theories for the origin of the high temperature, c~-relaxation in oriented linear 
polyethylene are compared with experiment. The c~-mechanism is assumed to be simple 
shear by all theories which differ in the allocation of the shear plane. The theories 
take the shear plane to be the interlamellar surface (theory I), a crystal plane of type 
(hkO) (theory IIA), a crystal plane of type (h00) (theory liB). The experiments comprise 
measurements of the creep tensile compliance D(t) on oriented specimens at angles 
0 ~ 45 ~ and 90 ~ to the draw axis. The crucial test involves the examination of specimens 
with approximately the same crystallographic orientation (determined by wide-angle 
X-ray diffraction) but differing orientation of lamellar normals. The analysis is based on 
the Reuss, constant stress hypothesis. It is shown that with this assumption, only 
theory I agrees with experiment. 

1. In t roduct ion 
Linear polyethylene (LPE) typically exhibits two 
mechanical relaxations between room tempera- 
ture and the melting point, for measuring 
frequencies of about 1 Hz. They are labelled a 
and a' in order of increasing temperature at 
which they occur. The mechanisms so far 
suggested for mechanical relaxation in this 
temperature range in LPE, largely fall into the 
following three groups. 
I. Interlamellar shear: mechanical relaxation 
occurs in response to shear stresses acting in the 
plane of the non-crystalline layer separating 
adjacent lamellar crystals [1-6]. 
II. lntracrystalline shear: mechanical relaxation 
occurs within the crystals, by relative displace- 
ment of molecules parallel to the chain axis [7-9 ]. 
Relaxation will be manifest for shear stresses 
within the crystal of type (hkO) [00l], with either 
(A) h and k arbitrary integers, or (B) k = 0 if 
relaxation is confined to shear on (h00) planes 
as suggested by some authors [7, 9]. 
III. Incoherent lattice vibration: mechanical 
relaxation occurs within the crystals because of 
viscous interaction between molecules, caused by 
the onset of incoherent lattice vibrations [10-13]. 
Of these three suggestions, both I and II assign 
mechanical relaxation to a deformation process 
of simple shear. They predict a highly anisotropic 

relaxation magnitude for samples with preferred 
orientation of either lamellar surfaces (theory I) 
or crystal axes (theory II). Clearly, this suggests 
an attractive experimental method of choosing 
at least between theories I and II. As yet, 
however, there has been no attempt to observe 
the effect on relaxation magnitude in LPE of 
varying, independently, the orientation of 
lamellar surfaces and crystal axes. 

The present study was designed to carefully 
test theories I, IIA and IIB, by bringing together 
two recent developments in polymer science. 
These are, firstly, the availability of specimens of 
LPE with high and unambiguous lamellar [14] 
and crystallographic [15] orientation, and 
secondly the application of computer controlled 
X-ray diffractometers for measuring complete 
crystal orientation in oriented polymers. This 
enabled specimens to be prepared with nearly 
unique orientation of each of vectors a, b, e and 
nl (unit normal to the lamella surface). Further- 
more, in order to make possible a choice between 
theories I and II, specimens were prepared with 
similar crystal orientation but differing lamellar 
orientation. 

The special orientation procedure used in this 
work consisted of drawing under conditions of 
essentially pure shear. That is to say, drawing was 
accompanied by simultaneous lateral constraint 
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in the plane of the sheet, a method previously 
adopted by Seto and Hara [14]. This produced 
highly-oriented sheets containing biaxial orienta- 
tion. Lamellar orientation was controlled by 
simply varying the temperature of drawing. Here 
we report tensile creep measurements in the 
a-relaxation region of temperature, made on just 
two such drawn sheets containing widely differ- 
ing lamellar orientations. 

2. Experimental 
2.1. Biaxially cold-drawn LPE 
The initial material for preparation of all 
samples of oriented LPE was 3 mm thick plate 
of Rigidex 2*, compression moulded at 155~ 
and quenched from the melt into water at room 
temperature. The resulting density at 23~ was 
p(23) = 0.950 g cm -3. 

The sheet of biaxially cold-drawn LPE studied 
here has been described before [15], but import- 
ant details will be given again. It was prepared by 
drawing such a plate to a draw ratio of 7 at room 
temperature, while maintaining the plate width 
nearly constant. This was achieved by starting 
with an initial length to width ratio of  only 1:9, 
thereby causing the clamps to exert lateral 
constraint on the sheet during neck formation. 
After annealing without constraint at 127~ for 
1 h the resulting sheet was transparent and of 
density p(23) = 0.967 g cm -a. 

Orientations of each of crystal axes a, b and c 
were measured directly by means of wide-angle 
X-ray pole figures for (200), (020) and (002) 
poles, obtained following the procedure outlined 
before [15]. Pole figures are presented here as 
polar plots in terms of polar angles ~b and X, 
defined with respect to reference directions X, Y 
and Z in the oriented sheet in Fig. 1. Pole figures 
for (200), (020) and (002) poles are shown in 
Fig. 2a, b and c respectively. Because of the high 
orientation of c-axes, the whole scattering hemi- 
sphere is not shown. Instead, a range of  just 30 ~ 
in X is covered. Thus Fig. 2a and b cover the 
range 0 ~ < ~b < 360 ~ 60 ~ < X < 90~ while Fig. 
2c covers the range 0 ~ < ~b < 360 ~ 0 ~ < X < 
30 ~ Contours shown occur at intervals of  10 ~ of  
maximum intensity. Fig. 2a shows a-axes to have 
preferred orientation in the .,YZ plane at 1 5  ~ to 
X. Fig. 2b shows b-axes to have a single preferred 
orientation parallel to I1. Accordingly, c-axes 
are shown by Fig. 2c to lie preferentially in the 
J(Z plane at •  ~ to Z. 

The same oriented sheet was studied by small- 
*BP Chemicals Ltd. 
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Figure 1 Definition of axes and co-ordinates in oriented 
polyethylene sheet. 

angle X-ray scattering. Patterns obtained with 
the beam in J( and Y directions are shown in 
Fig. 3a and b respectively. In each case, specimen 
thickness and photograph preparation conditions 
were identical, so that the intensities of the two 
patterns may be compared. It is clear from the 
intense four-point pattern of  Fig. 3b that lamella 
normals nl lie preferentially in the X Z  plane at 
•  ~ to Z. 

The above X-ray evidence may be summarized 
by the idealized doublet structural model shown 
in Fig. 4a. Crystalline and non-crystalline regions 
are stacked in regular layers, with a- and c-axes 
and lamella normals nl in the directions 
indicated. Crystal b-axes lie parallel to Y. 

2.2. Biaxially hot-drawn LPE 
The initial material was again a quenched 
compression-moulded plate of Rigidex 2. This 
plate was drawn in air at 121~ in a box 
immersed in a silicone oil-bath. The sheet width 
was again maintained nearly constant during 
drawing, and a uniform draw ratio of 9 was 
achieved within the necked region. The resulting 
transparent sheet was then annealed without 
constraint at 127~ for 1 h, after which it was 
still transparent and of density p (23)=  0.971 
g cm -3. Throughout the drawing and annealing 
sequence care was taken to reproduce as closely 
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as possible, in all details except draw tempera- 
ture, the method of preparation of the biaxially 
cold-drawn sheet. 

Wide-angle X-ray pole figures obtained for 
(200), (020) and (002) poles are shown in 
Fig. 5a, b and c respectively. Again, only a 
portion of the scattering hemisphere is covered. 
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Figure 2 Wide-angle X-ray pole figures for biaxially 
cold-drawn LPE: (a) (200) pole figure, (b) (020) pole 
figure, (c) (002) pole figure. 

Fig. 5a and b covers the range 0 ~ < r < 360 ~ 
60~ < X < 90~ and contours occur at intervals 
of 10 ~ of maximum intensity. Fig. 5c covers the 
range 0 ~ < ~b < 360 ~ , 0 ~ < X < 30~ and, for 
the sake of clarity, only 10, 30, 50, 70 and 9 0 ~  
contours are shown. Fig. 5a, b and c show a-, b-, 
and e-axes to have single preferred orientations 
parallel to X, Y and Z respectively. Small-angle 
X-ray scattering patterns obtained from this 
sheet are shown in Fig. 6a and b for the beam in 

Figure 3 Small-angle X-ray diffraction patterns from 
biaxiaUy cold-drawn LPE (draw direction vertical): 
(a) beam parallel to X, (b) beam parallel to II. 
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X and Y directions. The two-point patterns 
show nl to lie preferentially parallel to Z, with 
probably a greater spread of orientations in the 
X Z  plane than in the Y Z  plane, judging from the 
relative widths of the patterns. 

Again, the X-ray evidence may be summarized 
by means of an idealized structural model. This 
is shown in Fig. 4b. It is clear that the special 
significance of this biaxially hot-drawn sheet of 
LPE is the unique preferred orientation of each 
of vectors a, b, e and nl. This type of orientation 
has never previously been reported for bulk 
samples of melt-crystallized LPE, although a 
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Figure 4 Idealized structural model of (a) biaxially 
cold-drawn LPE and (b) biaxially hot-drawn LPE. 

(c) Y 
90 

o~215 

(oo2) 
Figure 5 Wide-angle X-ray pole figures for biaxially 
hot-drawn LPE: (a) (200) pole figure, (b) (020) pole 
figure, (c) (002) pole figure. 

similar result was obtained by drawing single 
crystal mats of LPE at 90~ [16].* 

*Samples of LPE with unique preferred orientation of each of vectors a, b, e, and nl have recently been obtained 
using a different technique by R. J. Young et al (J. Mater. Sei. 8 (1973) 23). 
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Figure 6 Small-angle X-ray diffraction patterns from 
biaxially hot-drawn LPE (draw direction vertical): 
(a) beam parallel to X, (b) beam parallel to Y. 

2.3. Tensile creep measurements  
From both oriented sheets described above 
tensile specimens were cut with tensile axes at 
various angles 0 to Z. These were rectangular 
specimens of dimensions in the test section of 
0.1 cm x 0.3 cm x 3.5 cm. Short term tensile 
creep tests were performed in the temperature 
range - 8 0  to +80~ using a tensile creep 
apparatus based on the principle of precision 
measurement of clamp displacement. This 
apparatus will be described elsewhere. The tensile 
creep compliance at temperature T, and creep 
time t, DT(t), was subject to error limits of •  %, 
arising chiefly from measurement of specimen 
dimensions and irreproducibility of clamping 
the specimen. Scatter of points on a given creep 
curve, however, was always less than 0.5 %. In 
order to maintain this precision, creep was 
terminated after 60 sec (below room tempera- 
ture) or 180 sec (above room temperature), after 
which time a gradual shift of the baseline, owing 
to differential thermal expansion of different 
parts of the creep apparatus, caused a systematic 
error greater than 0.5 %. During all creep tests, 
specimen temperature was maintained constant 
to within • ~ C. 

The time/temperature sequence employed 
always consisted of changing temperature down 
(below room temperature) or up (above room 
temperature) in steps of between 5 and 10~ 
allowing about 40 rain for the system to equili- 
brate at each new temperature before performing 
the creep test. After each test a recovery time 
sufficient for complete recovery of the specimen 
(to within the sensitivity of measurement) was 
allowed before again changing temperature. In 
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addition, care was always taken when cooling to 
cool at a rate of less than about 0.5~ min -1, 
since rapid cooling of LPE, even below room 
temperature, gives rise to misleading mechanical 
properties [17]. 

All creep tests were conducted at tensile 
strains of less than 0.001. In this region of strain, 
no non-linearity in the viscoelastic behaviour of 
those samples of LPE studied here could usually 
be detected (the departures from linearity which 
were observed, even at such low strains, will be 
mentioned below). In the present study, creep 
curves were used to calculate tan 3T(~), for a 
radial frequency o J, using the approximation 
method of Zener [18], 

*r I~ In D T f t ) l  
tan 3T((o) ~-- ~ -~ ~ n t  . ] ~ o = l / t  " (1) 

Equation 1 is a good approximation if the square 
bracket is small compared with unity and varies 
only slowly with In t [18], conditions which 
prevailed here. 

3. Results 
In treating the anisotropy of DT(t) for samples of 
oriented LPE, we note that this material (at the 
low strains used here) is an anisotropic linear 
viscoelastic solid. To describe the anisotropy at 
constant T and t, we may, therefore, employ the 
formalism of anisotropic elasticity theory [19]. 
Stress and strain are then related by the matrix 
equation 

= So (2) 

where e and a are the 6-component column 
matrices of strain and stress and S the compliance 
matrix [20]. Those samples of LPE studied here 
have orthorhombic symmetry with principal axes 
X, Y, Z, as a consequence of the method of 
drawing. The matrix S therefore takes the form 
[2o1 

S = [$11 S12 $13 0 0 0 ] 
/SI~ S~2 $28 0 0 0 ! 
1S1~ S~3 Ss3 0 0 0 ] 
l0 0 0 $44 0 0 ] [ 

0 0 0 $55 0 
0 0 0 0 0 S6G 

(3) 

where subscripts 1, 2, 3 refer to axes X, Y, Z. 
For a tensile test with tensile axis in the Y Z  plane 
at an angle 0 ~ to Z, the measured tensile com- 
pliance D o may be shown to be given by [20] 

D o = S n  sin40 + (2S~3 + $44)sin e0 cos 20 
+ $83cos40 �9 (4) 
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Equation 4 applies equally to tensile creep 
compliance Do(t ) or complex tensile compliance 
D*o(CO), if the matrix S corresponds to S(t) or 
S*(~o) respectively [19]. 

It is clear from Equation 4 that measurements 
of DTo(t) at only three different values of 0 are 
necessary to completely specify the angular 
dependence of D O in the YZ plane. Results are, 
therefore, presented here in terms of Do, D45 and 
Dg0, given by Equation 4 as 

Do = Ssz l ] 
m,~ = k(s= + 2s~ + s .  + s.~)~ 
Dgo = S~2 �9 

(5) 

Data from a creep curve DTo(t) are represented 
by isochronal quantities DTo(IO sec) and tan 
30(0.1 rad sec -~) (obtained from Equation 1). The 
temperature dependence of these, at 0 = 0 ~ 
45 ~ and 90 ~ are shown in Figs. 7 and 8 for 
biaxially cold-drawn LPE and in Figs. 9 and 10 
for biaxially hot-drawn LPE. 

It has been shown before [21] that properly 
stabilized specimens of biaxially drawn LPE 
show only one relaxation in the temperature 
range considered here. We label this the "a- 
relaxation" but, without meaning at this stage to 
imply its identity to the a-relaxation observed in 
undrawn LPE (see below). Figs. 8 and 10 show 
the anisotropy of the a-relaxation, as expressed 
by tan 3, to take the form tan 30 > tan 345 > 
tan 399 for both cold-drawn and hot-drawn LPE. 

f i 

r -  I I I L 

0"20 

%m 

c ~ D  
o D 

0 O0  0 C3 - -  

i oo o oloo - 
Ooo00 0 

I I I I I I 
-20 0 20 40 60 80 

T~ 

Figure 8 Biaxially cold-drawn LPE:  tan  ~ derived f rom 
tensile creep curves, for 0 = 0~ 45 ~ and  90 ~ 

This is confirmed by the relative gradients of the 
log10 DS(10 sec) versus Tplots of Figs. 7 and 9. 
Such a result is in agreement with all previous 
measures of the anisotropy of this relaxation in 
drawn and annealed LPE [5, 22, 23 ]. 
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Figure 7Biaxia l ly  cold-drawn LPE:  tensile creep compliance Do T ( I0  sec) p lot ted logari thmically versus tem- 
pera ture  T, for 0 = 0 ~ 45 ~ and  90 ~ 
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Figure9 Biaxially hot-drawn LPE: tensile creep compliance DoT (10 sec) plotted logarithmically versus 
lemperature T, for 0 = 0 ~ 45 ~ and 90 ~ 
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Figure 10 Biaxially hot-drawn LPE: tan ~ derived from 
tensile creep curves, for 0 =0 ~ 45 ~ and 90 ~ 

An interesting feature to emerge from the 
present work is the large difference between Do 
for biaxially hot-drawn LPE and Do for biaxially 
cold-drawn LPE (compare Figs. 7 and 9). In 
particular, the crossover between D o and Dg0 , 

which is usually observed in this temperature 
range for annealed cold-drawn LPE [22, 24] (see 
aIso Fig. 7), is absent in Fig. 9 for hot-drawn 
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LPE. This arises mainly because of the low value 
of the unrelaxed D 0 in the latter case. The low 
temperature mechanical anisotropy of  these 
samples will be discussed elsewhere. 

The reader will note that above room tempera- 
ture there is a high degree of scatter in tan 3, for 
all specimens studied here. This is a consequence 
of annealing effects occurring during the experi- 
ment, as shown in Fig. 10 where arrows indicate 
the effect on tan 3 of maintaining constant 
temperature for 1 h. In spite of  large changes in 
the gradients of creep curves (and hence tan 3) 
with time, however, the corresponding decrease 
in isochronal compliance DT(10 sec) is barely 
discernible in Figs. 7 and 9. Since it is clear that 
in each case the specimen was changing during 
the course of  the experiment aboveroomtempera-  
ture, all discussion below is based on results 
obtained at, or below, room temperature. The 
a-peak in tan 3 can be easily resolved at such 
low temperatures at the low effective frequency 
employed here (co = 0.1 rad sec-1). It  should be 
remembered that these specimens had previously 
been carefully stabilized at 127~ so the fact 
that annealing effects commence so soon above 
room temperature is particularly surprising. This 
phenomenon may, however, be related to the 
fact that the onset of partial melting in drawn 
LPE, even after extensive annealing at 127.5~ 
occurs at unusually low temperatures [25]. 

Another disturbing effect on the data presented 
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here is the non-linear viscoelastic behaviour 
observed at high temperatures in some samples. 
This effect was only discernible in D~J(10 sec) 
for biaxially cold-drawn LPE and at tempera- 
tures T greater than about 40~ In Fig. 7, 
therefore, asolid curve is drawn throughmeasures 
of D45T(10 sec) obtained at the same stress level, 
for temperatures greater than 40 ~ It is note- 
worthy that this deviation of about 5 ~ from 
linearity occurred at a tensile strain as low as 
0.0005. It seems that viscoelastic measurements 
made on drawn LPE above room temperature, 
even after extensive annealing, should always be 
checked especially carefully for reproducibility 
and linearity of viscoelastic behaviour. 

4. Comparison of theory and experiment 
4.1. Anisotropy of relaxation due to a simple 

shear process 
This section considers the anisotropy of relaxa- 
tion magnitude predicted for the present samples 
by theories I, IIA and IIB, taken in turn. The 
common feature of these theories, as noted above, 
is that they assign mechanical relaxation to 
deformation by simple shear. We begin by simply 
invoking this property of the theories. 

A specimen of LPE is assumed to be composed 
entirely of many identical structural units, where 
each unit is a multilayer sandwich of crystalline 
lamellae (each of thickness about 300 ~)  
separated by layers (of thickness about 50 ~)  
containing molecular segments in non-crystalline 
conformation. Consider each structural unit to 
contain a set of planes, which we label S-planes, 
whose normals are parallel to unit vector N, 
such that relaxation occurs when shear stresses 
act on these planes and parallel to a direction 
given by unit vector T. 

During a dynamic tensile test the external 
tensile stress, of amplitude a, is applied in the 
direction of unit vector F. Now let the i-th 
structural unit be oriented such that F makes 
angles ~,(i) and ~(~) with N and T respectively (see 
Fig. 1 l). Assume that all S-planes are subject to 
a stress system identical to that applied externally 
to the sample. Then the amplitude of resolved 
shear stress -rr~r (~) acting on the i-th set of S-planes 
and parallel to T is given by 

TNT (I) = O" COS y ( i )  COS ~( i )  . (6) 

Now let J "  be the shear loss compliance of the 
structural unit for shear on S-planes parallel to 
T, and D"  the measured tensile loss compliance 
of the specimen. Since all structural units are 

N F 
(NORMAL .~ i 

Figure 11 Orientation of i-th set of S-planes with respect 
to direction F of applied tensile stress c~, during a uniaxial 
tensile test of oriented LPE. 

assumed identical they all have identical values 
of J".  Equating the viscoelastic energy loss per 
unit volume of specimen per cycle to the energy 
dissipated on S-planes per cycle then gives 

D" ~2 = j , ,  ~-NT 2 (7) 

where a bar placed above denotes the volume 
average quantity. Combining Equations 6 and 7 
yields 

D"  = J "  cos2~ cos~)t . (8) 

The anisotropy of D"  arises solely from anisc- 
tropy of the term cos"7 cos~,  which is labelled 
I o. Thus Equation 8 may be applied in the form 

Do" = J"  Io (9) 

where J "  is a constant for a given oriented sheet 
of LPE. 

All that remains is to evaluate the function I o 
for each theory in turn, when applied to a given 
oriented sample. Davies et al [6] recently 
performed this calculation for the case where 
S-planes are lamellar surfaces (i.e., theory I) and 
the oriented sample has uniaxial symmetry about 
the draw direction. In the following, this treat- 
ment is extended by considering all three theories, 
I, IIA and IIB and applying them to the two 
types of biaxially oriented LPE studied here. 

4.2. Application to specific theories 
4.2.1. Theory I :  inter/amel/ar shear 
This theory proposes that S-planes are the 
surfaces of the lamellar crystals. Within a given 
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structural unit, therefore, N is identified with nl, 
unit normal to the lamellae. Now, because of 
difficulties with the interpretation of small-angle 
X-ray scattering patterns (see below), nl is 
assumed to have the simple doublet or single 
orientations shown in the idealized structural 
models of Fig. 4a and b. In general, therefore, 
for biaxially oriented LPE, all nl are taken to be 
oriented in the X Z  plane at angles ~ f J  to Z. 
For present purposes, assume the structural unit 
to have approximately transverse isotropy about 
nl. Then the shear direction T will be co-planar 

z 

{N) 

x N,y 

(G) 

z 

z r 
a. O y F~ 

x tc) 

with nl and F, giving A = 90 ~ - 7 and hence 

cos A = sin7 . (10) 

These assumptions are summarized in Fig. 12a. 
From this diagram, 7 is given by 

cosy  = F .  n] = cos 0 cos f~ (11) 

and so, making use of Equation 10 

I o = cosZ0 cosZD [1 - cos20 cos 2 D] . (12) 

The function I o from Equation 12 is shown in 
Fig. 13a and b for biaxially cold-drawn LPE 
(ft = 38 ~ and biaxially hot-drawn LPE (D = 0 ~ 
respectively. 

4.2.2. Theory IIA : intracrystalline shear 
The characteristic feature of both theories I IA 
and IIB is that the shear direction T coincides 
with crystal c-axes. In each sample of LPE studied 
here c-axes were highly oriented in the X Z  plane 
in general at an angle of ~ to Z (see Figs. 2c 
and 5c). The distributions about these positions 
will be neglected here. 

Theory I IA proposes that relaxation can occur 
equally in response to shear stresses on all crystal 
planes of type (hkO). In the present case, assume 
structural units to have transverse isotropy about 
c-axes; then shear deformation parallel to c will 
occur on those (hkO) planes whose normals are 
co-planar with c and F. S-planes therefore have 
N co-planar with c and F, and hence 7 = 90~ - A, 
and 

cos 7 = sin 2~ . (13) 

These assumptions are summarized in Fig. 12b. 
Proceeding in a similar manner as before A is 

given by o.3~, iol 0 " 3  - - I  I F t I - -  

(b) 
I e n d  I IA  

0.2 

O.1 

O ~ 2 ~  0 30 60 90 0 30 60 90 
0 o 0 o 

Figure 12 Application to biaxially oriented LPE of: 
(a) theory I, (b) theory IIA, (c) theory liB. 
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Figure 13 Anisotropy of the s-relaxation in the YZ 
plane as predicted by theories I, IIA and IIB, for (a) 
biaxially cold-drawn LPE, (b) biaxially hot-drawn LPE. 
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F . s  
COS:  - -  I - -  COS 0COS,  ( 1 4 )  

and, making use of Equation 13, 

I o = cos20 cos2a [1 - cos=0 cos2a] . (15) 

This function is included in Fig. 13 a and b for 
biaxially cold-drawn LPE (a = 5 ~ and biaxially 
hot-drawn LPE (a = 0 ~ respectively. 

4.2.3. Theory l iB: intracrystalline shear 
This theory is more specific than IIA, since 
relaxation is confined to shear on (h00) planes. 
Thus, in addition to the condition that T is 
parallel to c, N must be parallel to a (that is, 
parallel to the (200) plane normal). This 
situation is represented in Fig. 12c, again taking 
c-axes to have simple doublet orientation in the 
XZ plane at angles i a  to Z (only the case of - ct 
is shown). All a- and b-axes are therefore confined 
to planes containing the Y-axis and making 
angles of i a  with X. Within these planes let the 
orientation of a-axes be defined by the angle 
~b'(2oo ) shown in Fig. 12c. Similarly let the 
orientation of b-axes be defined by an angle 
~'(o2o)- 

Equation 14 applies in the present case also. 
Now, however, ), is given by 

F . a  
cos 9 / -  ]a]  - sin0sin~b'(~00 ) -  

cos 0 sin a cos ~b'(2oo ) (16a) 
o r  

F . a  
c o s T -  ]a [  - sin0sin~b'(2o0 ) + 

cos 0 sin a cos ~b'(2oo ) (16b) 

depending on whether c-axes are inclined within 
the XZ plane at + ct or - a  to Z respectively. 
Forming the function Io, making use of Equa- 
tions 14, 16a and 16b, then yields 

I o = cos20 cos2a [sin20(1 - cos2~b'(2oo)) + 
cos20 sin2a cos2~h'(~00)] . (17) 

The averages cos2~b'(2oo) were obtained from 
pole figures for (020) poles (Figs. 2b and 5b), in 
order to avoid the effect of some overlap from 
adjacent (1 10) poles in (200) pole figures (see 
Fig. 2a). Since a- and b-axes are orthogonal 

' 2 t within each crystal cos2~b'(200) = s m  ~b (o20). Figs. 
2b and 5b gave values for cos2~b'(~oo) of  0.702 and 
0.793 for biaxially cold-drawn LPE and biaxially 
hot-drawn LPE respectively. Making use of these 
values the function I o from Equation 17 was 

evaluated and is included in Fig. I4a and b, 
again taking a = 5 ~ and a = 0 ~ respectively. 

4.3. Comparison with experiment 
To compare the above theories with experiment, 
via Equation 9, the function Do" (= D o' tan 80) 
is required. This was evaluated from tensile creep 
data by combining the approximation [18] 

D'(oJ) ~_ ID(t)]o~=lh (18) 

with tan 8(~o) obtained from Equation 1. In this 
way, Do" was calculated for a frequency 6o --- 0.1 
rad sec -~ and temperature T = 20~ at 0 -= 0 ~ 
45 ~ and 90 ~ . These values of Do" and those of  
D o' and tan 80 used in their calculation are 
collected in Table I. The complete 0 dependence 
of Do", for o) = 0.1 rad sec -1 and T = 20~ 
was obtained from Do", D4a" and Dg0" by 
applying Equation 4 to Do*. The functions Do" 
obtained from experiment in this way are plotted 
in Figs. 14a and b for biaxially cold-drawn and 
biaxially hot-drawn LPE respectively. 

T A B L E  I Values o f  D o" and  tan  s 0 (and hence Do") 
derived f rom tensile creep data  for a radial  
f requency o~ = 0.1 rad  sec -1 and  t empera tu re  
T =  2 0 ~  (units  of  tensile compl iance  a re  
10-11 cm 2 dyn-1). 

Specimen 0 o D o" t an  s 0 Do" 

0 5.10 0.191 0.972 
Biaxially 45 7.60 0.128 0.974 
cold-drawn LPE 90 4.47 0.054 0.241 

Biaxially 0 1.57 0.142 0.222 
ho t -d rawn  LPE  45 4.63 0.095 0.439 

90 3.64 0.039 0.143 

l l i l l  

u 1 ' 0 ~  % 

~ O.5 

O I T I  T o 3o 6; 
0 o 

0.6/ 1 ~ ~ ~ i - -  

0"5 
O'4 
0.3 

0-2 

O.1 

O 
90 0 30 60 90 

8 o 

Figure 14 Aniso t ropy  of  tensile loss compl iance  Do'" 
(0.1 rad  sec-i) ,  deduced f r o m  tensile creep da ta  at  a 
t empera tu re  T = 20~ for (a) biaxially cold-drawr~ 
LPE,  (b) biaxially ho t -d rawn  LPE.  
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Theory and experiment are compared by 
simply comparing Fig. 13a with Fig. 14a, and 
Fig. 13b with Fig. 14b, since Do" should be 
proportional to I o from Equation 9. The result is 
astonishingly clear. Theory I correctly predicts 
the anisotropy of Do" for both oriented sheets of 
LPE. On the other hand, theories IIA and IIB 
are consistent with experiment for biaxially hot- 
drawn LPE, but are in serious error for biaxially 
cold-drawn LPE. This clear result gives strong 
support to the theory of relaxation by an inter- 
lamellar shear mechanism. It is, therefore, in 
accord with the recent conclusions of Davies et al 
[6], derived from measurements made on uni- 
axially cold-drawn and annealed LPE. 

The importance of adopting specific models of 
the relaxation in order to reach this conclusion 
must, however, be recognized. Earlier work of 
Ward and co-workers [5] made the empirical 
assumption that anisotropy of tan 3 is character- 
istic of the anisotropy of relaxation. The same 
treatment applied to the present results leads to a 
conclusion opposite to that reached above, since 
anisotropy of tan 3 was found to be independent 
of lamellar orientation (compare Figs. 8 and 10). 
This contradiction probably arises because of the 
spread of lamellar orientation present in actual 
samples of oriented LPE. Thus, although theory 
I predicts Dgo" = 0 for biaxially cold-drawn LPE 
(see Fig. 13a) and Do" = Dgo" = 0 for biaxially 
hot-drawn LPE (see Fig. 13b), the experimental 
values are in fact finite (see Fig. 14a and b). This 
can be easily explained on the basis of some 
spread of nl about their mean orientation. 
Unfortunately, it is not possible to allow for this 
effect by measuring the distribution of n~ from 
broadening of the small-angle X-ray scattering 
pattern. Broadening from this cause cannot be 
adequately separated from that due to finite 
crystal size and paracrystalline distortions [26], 
and finite X-ray beam diameter. 

5. Discussion 
5.1. Significance for undrawn LPE 
If  the mechanical a-relaxation in annealed 
drawn LPE occurs by simple shear deformation 
,of interlamellar layers, the question immediately 
follows: what is the significance of this result for 
undrawn LPE, on which previous measurements 
have mostly been made ? 

It is now well established that the micro- 
structure of as-drawn LPE differs markedly from 
that of undrawn LPE. The drawing process has 
three drastic effects, in addition to introducing 
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preferred lamellar and crystallographic orienta- 
tions. 
1. Spherulites containing wide lamellar crystals 
are destroyed, to produce fibres consisting of 
stacks of smaller crystals. [27-29]. 
2. Non-crystalline regions suffer molecular align- 
ment and an increase in density [30-33]. 
3. Crystalline regions are disrupted by the intro- 
duction of crystal defects and therefore decrease 
in density [31, 33]. 
Undoubtedly, the situation is further complicated 
by residual stresses which remain after drawing. 
The mechanical relaxation behaviour of LPE in 
this form, already studied by several authors 
[5, 21, 22, 34-38], must be interpreted in the light 
of such complicating factors, and will not be 
considered here. 

When the drawn polymer is annealed, how- 
ever, especially above about 120~ there is a 
remarkable recovery of the microstructure. Both 
crystalline and non-crystalline fractions become 
indistinguishable from their counterparts in 
undrawn LPE, as detected by a variety of 
techniques [31, 39-42]. Concurrently, adjacent 
fibres fuse together to give greater lateral 
continuity to the lamellar crystals, as observed by 
electron microscopy [43] and small-angle X-ray 
scattering [27]. The microstructure of drawn and 
well-annealed LPE may therefore be assumed 
identical to that of isotropic spherulitic LPE, 
except of course for the presence of preferred 
lamellar and crystallographic orientation. For 
this reason, the mechanical a-relaxation observed 
in such oriented specimens may reasonably be 
identified with the a-relaxation observed at the 
same temperature (and frequency) in undrawn 
LPE, crystallized either from the melt or from 
dilute solution. 

5.2. Comparison with dielectric and NMR 
a-relaxations 

Now at a similar temperature/frequency position, 
LPE exhibits a dielectric relaxation (when lightly 
oxidized) and narrowing of the wide-line NMR 
spectrum. There is much evidence that the 
molecular relaxation observed by these two 
techniques occurs within the body of crystals [44], 
probably by means of hindered chain rotation of 
180 ~ [8, 45, 46] accompanied by longitudinal 
displacement of [00�89 [8, 46]. Furthermore, the 
mechanical a-relaxation in polyethylene is known 
to depend for its existence on the presence of 
polyethylene crystals [47]. How may the present 
conclusions, assigning mechanical relaxation to 
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deformation of non-crystalline layers, be rational- 
ized in the light of these facts ? 

Hoffman et al [8] suggested that relaxation 
within the crystals by chain rotation of 180 ~ and 
longitudinal displacement of [00�89 would be 
coupled to the fold-containing crystal surface 
layers when folds were sufficiently tight (contain- 
ing the minimum of 5 CH2 units). Their particu- 
lar model of the fold surface has been seriously 
challenged by recent experiments, which suggest 
more mobile folds [48], but the essence of their 
argument probably remains valid. Mechanical 
relaxation could occur as follows in an iso- 
chronal experiment. At low temperatures, a 
sequence of CH2 units in non-crystalline configur- 
ation is effectively pinned at the point (for a 
cilium) or points (for a chain fold) where it 
enters the crystal. These points locally restrict 
the otherwise large-scale motion of the sequence, 
for temperatures above the 7-relaxation (which 
has some of the characteristics of a glass-rubber 
transition [49, 50]. At high temperatures, 
however, when relaxation of crystalline molecules 
by chain rotation can occur rapidly, these points 
become effectively free and release their con- 
straint. By this means, relaxation within the 
crystal (the dielectric and NMR a-relaxation) 
could increase the compliance of the non- 
crystalline surface layers and give rise to 
mechanical relaxation. 

The essential feature of the above suggestion is 
that the two a-relaxations, observed by dielectric 
and NMR techniques on the one hand, and by 
mechanical tests on the other, are coupled but 
have different molecular origins. Independent 
evidence that these two relaxations are not 
identical is obtained by comparing their tem- 
perature/frequency positions. Mechanical and 
dielectric results in the a-region have been 
compared by Reddish and Barrie [51] and 
Sandiford and Willbourn [52]. The two tech- 
niques yield approximately equal activation 
energies [52]. Nevertheless, the mechanical 
a-relaxation lies consistently at higher tempera- 
tures (lower frequencies) than the dielectric 
a-relaxation [51, 52]. Furthermore, McCall and 
Douglass [53] found the temperature/frequency 
position of the NMR a-relaxation to agree well 
with its dielectric counterpart, but to lie at 
considerably lower temperatures (higher fre- 
quencies) than the mechanical a-relaxation. 

5.3. Other evidence 
From the large body of experimental evidence 

concerning the a-relaxation in LPE, two items: 
especially lend support to the present model. 
Firstly, when single crystals of LPE are annealed, 
the mechanical a-relaxation magnitude increases 
linearly with reciprocal long period, L -1 [54, 55]. 
This suggests that mechanical relaxation origin- 
ates within crystal surface folds, whose con- 
centration (neglecting the effect of chain ends) is 
proportional to L -1 [54]. Secondly, high energy 
irradiation (electrons or ),-rays) of LPE causes 
crosslinks to be formed in the lamellar surfaces 
or between lamellae [56]. When LPE is treated 
in this way the mechanical a-relaxation decreases 
in magnitude [3, 36, 54, 57]. Clearly, this is 
further evidence that relaxation occurs within 
interlamellar regions. 

The main challenge to the present conclusions 
comes from a few observations suggesting that a 
contribution to the mechanical a-relaxation 
arises within the crystals. Of these, the most 
convincing are the finite relaxation magnitude 
predicted for annealed single crystals when the 
extrapolation is made L -1 -~ 0 [54, 55] and the 
apparent occurrence of the relaxation in extended 
chain crystals of LPE [36, 58]. Probably, there- 
fore, the crystals themselves do in fact make a 
contribution because of the concurrent crystal 
relaxation, observed by dielectric and NMR 
techniques and acknowledged in the model 
described above. Nevertheless, the present results 
suggest that the mechanical a-relaxation in LPE 
as normally prepared is dominated by the 
contribution from non-crystalline regions. 

It should be noted, however, that in reaching 
this conclusion theory III (see Introduction), 
which also assigns mechanical relaxation to the 
crystals, has been neglected. This theory does not 
have the special feature of attributing mechanical 
relaxation to a simple shear deformation, anc~ 
therefore cannot be examined by the treatment 
used here. The present work can shed no light on 
its validity, although it was recently seriously 
challenged by careful measurements of the 
anisotropy of narrowing of the wide-line NMR 
spectrum in the a-region of temperature [46]. 

6. Conclusions 
Anisotropy of the mechanical a-relaxation in 
biaxially oriented LPE agrees with the predictions 
of relaxation occurring by interlamellar shear - 
in accord with uniaxially oriented LPE [6]. It 
does not agree consistently with relaxation 
occurring by intracrystalline shear of type (hkO)~ 
[00l]. 
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